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Abshact. An alternative derivation of general relativity is presented in which the field 
equations are derived from a gauge invariant quadratic Lagrangian by varying the affine 
field Pa and keeping the geometry fixed. The field equations show that the Pa can be con- 
sidered as a Christoffel connection of a tensor gb and if, after the variation, the metric 
tensor is chosen to be this tensor, the field equations of general relativity with a comical 
constant are recovered. 

In Einstein's (1915) theory of general relativity the gravitational field is identified with 
the geometrical tensor gab of space-time. The field equations of the theory can be 
derived from an action principle (Hilbert 191 5) 

where gb  is the inverse tensor of gab such that $e& = S;, and g is the determinant of 
the gab. An alternative derivation was provided by Palatini (1919) in which the affine 
field I-;c is defined in terms of parallel transport of a vector P giving a change dl" with 

dl" = - T&lb dx' (2) 
where rtc = r:b but is otherwise arbitrary (having forty independent components) and 
the Ricci tensor defined by 

Rob = a X b  a X c  ad be ab cd' + l-c r d  - r c  rd (3) 

With the same action integral as (1) the theory then follows from the two sets ofequations 

6J 6 J  
- = 0, 
6gob 6l-k 

- = 0, 

the second set leading to the condition that the affine derivative 
namely 

(4) 

of f b  J -g vanishes, 
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The other set then gives the standard Einstein field equations 

Rab-h%bR = %b. ( 7) 
In this formalism while the geometrical tensor g c b  and the affine field Tic are initial 
independent concepts the field equations require that the theory is purely geometro- 
dynamic, thus relating the T’s and the g’s. 

This raises an interesting philosophical question that has its roots in the conven- 
tionalist philosophy of science that was so eloquently expressed by Poincare (1902), 
that there is no such thing as real geometry, the only meaningful statements about the 
physical world are a combination of geometry and matter. The choice of geometry is 
arbitrary, it is just a convention and having chosen it out of the wide range of geometries 
known to the mathematician, a physical theory can then be expressed in this geometrical 
background. The physicist cannot say whether this geometry is true or false, only that 
on doing such and such an experiment he obtained a particular result; his experiment 
is not about geometry, but about the behaviour of material bodies. Of course, one may, 
by choosing a particular geometry, such as that found by physical bodies (or light and 
clocks), be able to represent the theow in a succinct form, but this is not essential to the 
theory. In Poincark’s words ‘one geometry cannot be more true than another, it can 
only be more convenient’. 

How is this to be reconciled with the action principle of Palatini? If we confine 
our attention to Riemannian geometries then there is a metric tensor q,,b and an affine 
field rk, but the qab should be an arbitrarily chosen tensor, not constrained to have 
zero affine derivative and therefore not related to the gab as given in equation (6). Yet 
since it may be more convenient to choose the Vab to be so related to the r’s, we seek a 
formalism that, on making this equality, reduces to general relativity. In terms of an 
action principle we require 

to give the normal field equations of general relativity. There is an interesting point 
here: in this formalism the qab is set equal to the gab after the variation, not inside the 
action integral. How can this be achieved? 

Now an action principle of the form (8) wouM give field equations 

s;b+s? = 0 (9) 

As the field equations of general relativity are linear in the first derivatives of the r, 
for the field equations (9) to reduce to general relativity, S:b must be linear in these 
derivatives, and so the action must be quadratic in the first derivatives of the r. Since 
the action is also an invariant we need a tensor density that is quadratic in the curvature 
R,, , which leads us to consider 

where qab is the inverse tensor of qab given by tJacqcb = 8; and the R,, are given in terms 
of the T’s by equation (3). Such an action is invariant under the gauge transformation 
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q a b  + v(x)qab. We note that the Rab so defined are not necessarily symmetric, indeed 

We have at this stage two possible routes to follow. We could retain the Fab and hope 
to identify it with the electromagnetic field, since in the purely antisymmetric case the 
action (1 1) reduces to 

which is just the action of the electromagnetic field, but we would expect this to lead 
us into the quagmire of unified field theory. Alternatively, at this stage we can insist 
on Fab = 0 and explore its consequences. The first possibility is deferred to later work 
and we shall here take the second route. Certainly without an electromagnetic source 
term in our theory Fab = 0 is a possible solution of our field equations. 

The field equations are obtained by varying the action with respect to the T's; for 
our action (11) this is quite straightforward and yields (Einstein 1923) 

Ha: + H 2  - d",b: - 6:Hn: = 0 (14) 

where 

and :e denotes the affine derivative defined by 

aHab Ha: = e + TzcHcb + T:,Ha' - r' ec Hab 
a x  

The forty field equations (14) determine the forty connections cc for any given metric 
qab. Equation (14) is symmetrized since we postulated a priori that the connections 
were symmetric, ric = l-& so that they are not independent quantities in the field 
equations obtained by setting d J / d r i c  = 0. In a more generalized theory without these 
symmetry properties the equivalent of equations (14) gives sixty equations for the sixty- 
four unknowns l-&, since Ab = Hria - r$) is not determined by the equations. 

In our case we take Rab = Rba which with a symmetric qab implies through equation 
(15) that Hab is symmetric. Contracting equation (14) yields HqZ = 0 and hence 

Hq: = [(qa'Vbd - #btfcd)RcdJ(l]:e = 0. (17) 

Since this equation shows that the affine derivative of a tensor density of weight one 
and rank two is identically zero it follows that we can define a symmetric tensor 'potential' 
f b  with inverse gab such that f b g b c  = d:, and the connections are defined in terms of 
the g's in exactly the same way as the Christoffel connections (cf equation (6)). We show 
this by taking 

where 
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and 1 is an arbitrary constant; substitution into equations (17) then gives 

(gb( - det g , b ) l ' z ) : e  = 0 (20) 
which is just the same as equation ( 5 )  for the Palatini variation of the Einstein-Hilbert 
Lagrangian. These equations in turn imply (-det g,b):'dz = 0 and hence g: = 0 and 
then g a b : e  = 0 or 

where g a b  is the inverse tensor o f f b ,  which is not the same as lowering the indices using 
the metric tensor &. By choosing the indices (a, b, e) in this equation to be successively 
(d, c, b), (d,  b, c) and (c, b, d), multiplying each equation by gd, adding the first two and 
subtracting the third, we find 

agbd "".I b c - 2  (9 ax. axd 
1 p --gd -+--- 

which is exactly the relationship between the Christoffel connections and the metric 
tensor in Riemannian geometry. 

Turning now to our general programme which was to find a formalism in which 
the geometry tensor qNv was arbitrary and the fields determined in that geometry, 
but which reduced to general relativity with a special choice of metric tensor, this is 
exactly what we have achieved Equation (17) gives the forty equations satisfied by the 
forty pbc yet because they also imply equations (22) we can make a special choice q , b  = g a b  

in which case equation (1 7) becomes 

(23) p b - 1  b R  = l g a b  
2 f  

or Einstein's field equations with a cosmological constant. The constant 1 is arbitrary 
since the field equations, while demonstrating that a g , b  exists, are invariant under the 
constant gauge transformation g a b  -+ 

To include the sources of the field, and to determine how matter responds to the 
field we need to add a matter action to our action integral (10). The standard matter 
action in general relativity is 

since this leaves rzc invariant. 

P 

where the integrai is along the world line of each particle mi, and d4(x - z )  is the four- 
dimensional Dirac delta function. In our case we have an element of arc length ds, 
where 

(25) ds2 = ?lab dx" d x b  

and the non-tensor fields I-g, and the tensors q,,, R,, . Guided by our desire to reproduce 
general relativity by the special choice of q,, = gab we take 

where K is a coupling constant. We now take as our field equations 
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which on proceeding as in the previous case gives 

Tab = 1 --~~m'ds-64(x-~)ds. dx" dxb 
J-S 
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(28) 

Again, equations (28) demonstrate the existence of a potential tensor g a b  defined by 

Afb  J - g  = [ ( t f " ' ~ b d - ~ ~ " b t , f d ) R c , j + ~ T a b ]  J - q  (30) 

and again we may take the convenient, though conventional, choice of Sa, = g a b  and 
write equation (30) as 

(31) R o b  - 3 f b R  - A$b = -  tab 

which is just Einstein's field equations including sources. 

yields R,, = -Aga,, and hence the matter Lagrangian (26) becomes 
What about the motion of test particles? With no matter present equation (31) 

c 1 m i g a b -  dx" ds dXb ds d4(x - z) 
i 

which reduces simply to 

(33) 

if we take q,, = g a b .  Thus on varying the world line of a particle keeping the geometry 
and fields fixed, we obtain a geodesic of the g a b  Riemannian geometry, exactly as in 
general relativity. 

I conclude, therefore, that the theory obtained by taking the symmetric affine con- 
nection as fields in the action 

for arbitrary geometric field qab, yields field equations that demonstrate the existence 
of a tensor g a b ,  as well as equations for the rEc in terms of the sources. If we choose to 
set = gab then the field equations are identical with general relativity. The theory 
presented here, therefore, is general relativity but expressed in such a way as to satisfy 
the conventionalist school of philosophy. The action is quadratic in the curvature, a 
fact that offers considerable hope for future work. 

In the present theory we had to make the postulate that R,, was symmetric; the 
solutions we obtained with this postulate are, of course, solutions of the theory obtained 
from the action (34) with general R,,, and indeed of the theory obtained with general 
(not necessarily symmetric) rEc, but I am not able to show that they are unique. I do 
not pursue this point here since I think it more profitable to pursue the general non- 
symmetric affine theory including an electromagnetic source term and I hope to return 
to this in a subsequent pnblication. 
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